

SPIKE PRIME LESSONS

By the Creators of EV3Lessons

MICROPYTHON NO SPIKE PRIME

POR SANJAY E ARVIND SESHAN

OBJETIVOS

Aprender a usar o REPL MicroPython no SPIKE Prime.

Para criar programas em VS Code e roda-los no Hub siga as instruções em: <u>https://github.com/sanjayseshan/spikeprime-vscode/wiki</u>

Copyright © 2020 SPIKE Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 1/17/2020)

3

PASSO I: CONEXÃO (WINDOWS)

- Instale um emulador de terminal a sua escolha:
- I Exemplo: PuTTY <u>https://www.putty.org/</u>
- Certifique-se que o software do SPIKE Prime não está aberto.
- Conecte o Hub via USB ao PC
- Ache a porta
 - No PC, vá para o Gerenciador de Dispositivos (Menu Iniciar → Ferramentas Adminstrativas do Windows → Gerenciamento do Computador → Gerenciador de Dispostivos) na aba serial para ver quais portas serial estão conectadas.
 - Se você tem varias portas USB tente desconectar e reconectar para ver quais aparecem
- Conecte a porta certa a uma taxa de 115200 baud.

PASSO I: CONEXÃO (DEBIAN GNU/LINUX)

- Abra o terminal ele geralmente é achado em Aplicativos → Ferramentas do sistema
- 2. Digite os seguintes comandos (eles são para Debian e derivados)
 - 1. sudo apt-get update
 - 2. sudo apt-get install -y screen
- 3. Conecte seu Hub e execute sudo dmesg. Uma longa lista de mensagens de log irá aparecer. Na última linha (ou perto dela) deve conter o dispositivo USB ACM e uma identificação similar a ttyACM0. Se você não localiza-la primeiro procure pelo bloco grande LEGO Technic.
- Execute sudo screen /dev/ttyACM0 115200.Troque ttyACM0 pela sua identificação.

🔳 sanjay@lenovo: ~ 📃 🗆 🗙
File Edit View Search Terminal Help
[154870.922611] ath: country maps to regdmn code: 0x3a [154870.922611] ath: Country alpha2 being used: US [154870 022611] ath: Regneric used: 0x2a
<pre>[154870.922613] dtl: neggal dsed 0x3d [154870.922613] atl: regdomain 0x83d dynamically updated by country element [154870.924227] IPv6: ADDRCONF(NETDEV_CHANGE): wlp107s0: link becomes ready</pre>
[154870.975985] wlp107s0: Limiting TX power to 30 (30 - 0) dBm as advertised by 04:a2:22:b6:8a:08
<pre>[155669.737066] pcieport 0000:00:1c.4: AER: Corrected error received: 0000:00:1c .4</pre>
<pre>[155669.737083] pcieport 0000:00:1c.4: PCIe Bus Error: severity=Corrected, type= Data Link Laver, (Transmitter ID)</pre>
<pre>[155669.737086] pcieport 0000:00:1c.4: device [8086:9d14] error status/mask=00 001000/00000000</pre>
[155669.737089] pcieport 0000:00:1c.4: [12] Timeout [155964.157881] usb 1-7: new full-speed USB device number 10 using xhci hcd
<pre>[155964.307652] usb 1-7: New USB device found, idVendor=0694, idProduct=0009, bc dDevice= 2.00</pre>
<pre>[155964.307664] usb 1-7: New USB device strings: Mfr=1, Product=2, SerialNumber= 3</pre>
[155964.307668] usb 1-7: Product: LEGO Technic Large Hub in FS Mode [155964.307672] usb 1-7: Manufacturer: LEGO System A/S
[155964.30767(d35 1 / Scilationstr. Scipsors)

PASSO I: CONEXÃO (MAC OS X)

- I. Abra o terminal geralmente localizado em Aplicações \rightarrow Utilidades
- Execute ls /dev/ | fgrep usb | fgrep tty para localizar a porta do Hub.
- 3. Execute screen /dev/tty.usbmode366A398231381 115200. Troque tty... Pela resposta do primeiro comando. Se houver várias respostas tente todas acertar.

Abaixo temos um exemplo dos comandos rodando. A resposta do computador esta em verde e o comandos digitados em preto.

\$ ls /dev | fgrep usb | fgrep tty

tty.usbmodem366A39831234

\$ screen /dev/tty.usbmodem366A39831234

PASSO 2

- Você pode ver uma lista de números. São o log de motores e sensores.
- Aperte Ctrl-C
 - Você estará pronto para programar.

B COM18 - PuTTY		-	- 🗆	\times
0, 165, 0]], [49, [0, 0, -141, 0]], [61, [70, 10]]], [-38,	31, 1001]	, [0, 4,	1],
{"m":0,"p":[[49, [0, 2, 14, 0]], [61, [75, 10]],	[48, [0,	0, -82, 0]], [48,	[0,
0, 165, 0]], [49, [0, 0, -141, 0]], [61, [69, 10]]], [-32,	31, 1004]	, [-1, 5,	2],
{"m":0,"p":[[49, [0, 2, 14, 0]], [61, [75, 10]],	[48, [0,	0, -82, 0]], [48,	[0,
0, 165, 0]], [49, [0, 0, -141, 0]], [61, [69, 10]]], [-36,	32, 1003]	, [-1, 5,	1],
{"m":0,"p":[[49, [0, 2, 14, 0]], [61, [75, 10]],	[48, [0,	0, -82, 0]], [48,	[0,
0, 165, 0]], [49, [0, 0, -141, 0]], [61, [69, 10]]], [-38,	35, 1003]	, [0, 5,	1],
{"m":0,"p":[[49, [0, 2, 14, 0]], [61, [75, 10]],	[48, [0,	0, -82, 0]], [48,	[0,
0, 165, 0]], [49, [0, 0, -141, 0]], [61, [69, 10]]], [-9,	10, 889],	[-1, -7,	0],
{"m":0, "p":[[49, [0, 2, 14, 0]], [61, [75, 10]],	[48, [0,	0, -82, 0]], [48,	[0,
0, 165, 0]], [49, [0, 0, -141, 0]], [61, [70, 10]]], [-27,	42, 969],	[2, 6, 0), [
{"m":0,"p":[[49, [0, 2, 14, 0]], [61, [75, 10]],	[48, [0,	0, -82, 0]], [48,	[0,
0, 165, 0]], [49, [0, 0, -141, 0]], [61, [69, 10]]], [-31,	25, 1010]	, [0, 5,	2],
{"m":0,"p":[[49, [0, 2, 14, 0]], [61, [75, 10]],	[48, [0,	0, -82, 0	11, [48,	[0,
0, 165, 0]], [49, [0, 0, -141, 0]], [61, [69, 10]	11, [-39,	29, 1000]	, [0, 4,	31,
{"m":0,"p":[[49, [0, 2, 14, 0]], [61, [75, 10]],	[48, [0,	0, -82, 0]], [48,	[0,
0, 165, 0]], [49, [0, 0, -141, 0]], [61, [69, 10]]], [-41,	31, 1005]	, [0, 5,	21,
{"m":0,"p":[[49, [0, 2, 14, 0]], [61, [75, 10]],	[48, [0,	0, -82, 0]], [48,	[0,
0, 165, 0]], [49, [0, 0, -141, 0]], [61, [69, 10]]], [-23,	40, 1010]	, [0, 6,	i],
{"m":0,"p":[[49, [0, 2, 14, 0]], [61, [75, 10]],	[48, [0,	0, -82, 0]], [48,	[0,
0, 165, 0]], [49, [0, 0, -141, 0]], [61, [69, 10]	11, [-52,	17, 1022]	, [-3, 5,	01,
{"m":0, "p":[[49, [0, 2, 14, 0]], [61, [75, 10]],	[48, [0,	0, -82, 0	11, [48,	10,
0, 165, 0]], [49, [0, 0, -141, 0]], [61, [70, 10]	1], [-24,	34, 1009]	, [0, 3,	11,
4. 111. "". 01}				

0, 165, 0]], [49, [0, 0, -141, 0]], [61, [69, 10]], [-43, 38, 995], [0, 4, 2], [MicroPython vl.9.4-1146-gca9944357 on 2019-10-03; LEGO Technic Large Hub with ST M32F413xx Type "help()" for more information.

MODULO HUB

- O módulo "hub" contém todas as funções principais para interagir com o Hub do SPIKE Prime.
- Para acessar este módulo, você primeiro deve importa-lo. Digite "import hub" no prompt do MycroPython

Uma vez que você tenha importado o Hub você pode explorar um pouco das possibilidades usando o recurso de "auto completar". Digite "hub." (certifique-se de inserir o ponto) e depois aperte a tecla Tab.

>>> hub.			
class	name	version	BT_VCP
Image	USB_VCP	battery	ble
bluetooth	button	display	info
led	motion	port	power_off
sound	status	supervision	temperature

COMANDO DE AJUDA

O MycroPython no bloco também dispõe de uma ferramenta de ajuda limitada. Para acessa-la, digite "help()"

```
>>> help()
Welcome to MicroPython!
For online help please visit http://micropython.org/help/.
Ouick overview of commands for the board:
 hub.info() -- print some general information
 hub.status() -- print sensor data
Control commands:
  CTRL-A
                -- on a blank line, enter raw REPL mode
                -- on a blank line, enter normal REPL mode
 CTRL-B
                -- interrupt a running program
 CTRL-C
 CTRL-D
                -- on a blank line, do a soft reset of the board
  CTRL-E
                -- on a blank line, enter paste mode
For further help on a specific object, type help(obj)
For a list of available modules, type help('modules')
```

OUTROS MÓDULOS

Digite o comando help (`modules `) (Certifique-se de usar as aspas)

>>> help('modules')				
main	heapq	struct	umachine	
_onewire	hub	sys	uos	
array	io	time	urandom	
binascii	json	ubinascii	ure	
builtins	machine	ucollections	uselect	
cmath	math	uctypes	ustruct	
collections	micropython	uerrno	utime	
errno	OS	uhashlib	utimeq	
firmware	random	uheapq	uzlib	
gc	re	uio	zlib	
hashlib	select	ujson		
Plus any modules on the filesystem				

Isso provem uma lista de módulos disponíveis no SPIKE Prime

OTHER MODULES/LIBRARIES

Você pode usar o comando Importar para carregar qualquer módulo que você ache e então usar o autocompletar ou o "help()" para explorar suas funções.

```
>>> import random
>>> help(random)
object <module 'urandom'> is of type module
____name__ -- urandom
getrandbits -- <function>
seed -- <function>
randrange -- <function>
randint -- <function>
choice -- <function>
uniform -- <function>
uniform -- <function>
>>> random.random()
0.711182
>>> random.random()
0.408947
```

DESAFIO I: OLÁ MUNDO

- Mostre "Olá Mundo" na matriz de LED do Hub.
- Alguns passos chave.
 - I. Importe o módulo Hub
 - 2. Explore os componentes do módulo para achar o que controla a matriz de LEDs. (Dica:Você deseja usar o "display".)
 - 3. Por fim procure um método que mostre algo no display.

DESAFIO I: OLÁ MUNDO

Mostre "Olá Mundo" na matriz de LED do Hub.

>>> import hub >>> hub.	name	version		
Image	USB_VCP	battery	DIE	
bluetooth	button	display	info	
led	motion	port	power_off	
sound	status	supervision	temperature	
>>> hub.display.				
class	callback	clear	pixel	
rotation	show			
>>> hub.display.show('Hello World')				

CRÉDITOS

- Essa lição foi criada por Sanjay Seshan e Arvind Seshan para SPIKE Prime Lessons
- Mais lições em <u>www.primelessons.org</u>
- Traduzido para o português por Lucas Colonna

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International</u> License.