
PRIME LESSONS
By the Makers of EV3Lessons

PRIME LESSONS

LINE FOLLOWER
BY SANJAY AND ARVIND SESHAN

This lesson uses SPIKE 3 software

LESSON OBJECTIVES

Learn how to get a robot to follow a line using Color Mode or Reflected Light Mode on
the SPIKE Prime Color Sensor

Learn how to combine sensors, loop, and conditionals

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/23/2023) 2

ROBOTS FOLLOW THE EDGE OF THE LINE

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/23/2023) 3

The robot has to
choose which way
to turn when the

color sensor sees a
different color.

The answer
depends on what

side of the line you
are following!

If on
black,
turn left.
If on
white
turn
right.

If on
black,
turn
right.
If on
white
turn left.

Drive
Base 1

WHICH SIDE OF THE LINE SHOULD YOU START ON

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/23/2023)
4

✔

✗
✔

If you write a line follower to
follow the right side of the
line, you have to start the

robot on the right of the line

Drive
Base 1

CHALLENGE: FOLLOW A LINE

Write a program that follows the right edge of the line

If your sensor sees black, turn right

If your sensor sees white, turn left

Use a conditional to make that decision

Repeat the line follower forever

Use Color Mode or Reflected Light Mode

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/23/2023) 5

Note: To line follow with the Advanced Driving Base (ADB) in
Color Mode you will have to make a modification to the design
because the color sensor does not recognize black at the height in
the original build instructions. See our Color Sensor lesson.

Drive
Base 1

TWO WAYS TO TURN

A previous lesson, “Turning with the Gyro” explained two motor pair functions to make
the robot turn. Please refer to that lesson for details.

1. You can use motor_pair.move and adjust the steering value. This lesson will use steering.

1. You can use motor_pair.move_tank and input different velocity values for the left and
right motors. You can try this out on your own.

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/23/2023) 6

motor_pair.move(pair, steering)

Change steering
value here. A value
of 0 moves straight

motor_pair.move_tank(pair, left_velocity, right_velocity)

Change velocity values here.
Same velocity values moves

straight

LINE FOLLOWER – COLOR & REFLECTED MODE

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/23/2023) 7

from hub import port
import motor_pair, color_sensor, runloop

Constants for Drive Base 1
motor_pair.pair(motor_pair.PAIR_1, port.C, port.D)

Follow the right side of black line (Black-White edge). NOTE: Our test was run on a black-white mat.
If your mat has many colors, you will have to lower the threshold to avoid other colors.
To follow a White-Black edge, change the IF condition from < 50 to > 50
To use color mode, import color, and use condition:
if (color_sensor.color(port.A) == color.BLACK)
async def line_follow_forever():
 while (True):
 if (color_sensor.reflection(port.A) < 50): # sensor is on Black. Lower threshold as needed for your case.
 # Turn right, i.e. away from Black
 motor_pair.move(motor_pair.PAIR_1, 30, velocity = 300)
 else: # sensor is on white
 # Turn left, i.e. towards Black
 motor_pair.move(motor_pair.PAIR_1, -30, velocity = 300)

async def main():
 await line_follow_forever()

runloop.run(main())

EXTENSION - CHANGING EXIT CONDITIONS

In FLL, you typically do not want to line follow forever. You may want to stop under
some conditions, some of which can be:

1. Your ultrasonic sensor detected something

2. Your force sensor was pressed

3. You have a second color sensor on your robot that sensed a marker on the mat. This is
extremely useful in FLL.

4. You want to line follow for an approximate distance.

Hint: you can reset an individual motor’s relative position and then stop when it crosses a value
that maps to the distance you want to follow. Be mindful of clockwise/counterclockwise motor
rotation

Combine this lesson with the Loops lesson to solve this problem.

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/23/2023) 8

LINE FOLLOW UNTIL SECOND SENSOR SEES BLACK

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/23/2023) 9

from hub import port
import motor_pair, color_sensor, runloop, sys

motor_pair.pair(motor_pair.PAIR_1, port.C, port.D)

follow right side of black line (Black-White edge) until second sensor sees Black
Test mat has only Black and White colors. Adjust threshold of 50 to a lower value as you need.
async def line_follow_until_line():
 # Drive Base 1 is modified to have a second color sensor at port B.
 # Follow line until sensor B sees black
 while (color_sensor.reflection(port.B) > 50): # Adjust threshold as needed.
 if (color_sensor.reflection(port.A) < 50): # sensor is on Black. Adjust threshold as needed.
 # Turn right, i.e. away from Black
 motor_pair.move(motor_pair.PAIR_1, 30, velocity = 300)
 else: # sensor is on white
 # Turn left, i.e. towards Black
 motor_pair.move(motor_pair.PAIR_1, -30, velocity = 300)

async def main():
 await line_follow_until_line()
 sys.exit("Stopping")

runloop.run(main())

LINE FOLLOW FOR APPROXIMATE DISTANCE

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/23/2023) 10

from hub import port
import motor, motor_pair, color_sensor, runloop, sys

motor_pair.pair(motor_pair.PAIR_1, port.C, port.D) # Drive base 1 (DB1)
WHEEL_CIRCUMFERENCE = 17.5 # cm – wheel size for DB1

follow right side of black line (Black-White edge) until distance is covered.
async def line_follow_for_distance_cm(distance_cm):
 # Calculate the number of degrees to turn to cover the desired distance.
 # See lesson on More Accurate Turns for explanation.
 motor_degrees = int((distance_cm/WHEEL_CIRCUMFERENCE) * 360)
 # Use motor D for DB1 because it moves clockwise and the degrees count up.
 motor.reset_relative_position(port.D, 0)
 while (motor.relative_position(port.D) < motor_degrees):
 if (color_sensor.reflection(port.A) < 50): # sensor is on Black. Adjust threshold as needed if this is too high
 motor_pair.move(motor_pair.PAIR_1, 30, velocity = 300) # Turn right
 else: # sensor is on white
 motor_pair.move(motor_pair.PAIR_1, -30, velocity = 300) # Turn left

async def main():
 await line_follow_for_distance_cm(70)
 sys.exit("Stopping")

runloop.run(main())

CREDITS

This lesson was created by Sanjay and Arvind Seshan for Prime Lessons

Additional contributions by FLL Share & Learn community members.

More lessons are available at www.primelessons.org

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/23/2023) 11

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

