
PRIME LESSONS
By the Makers of EV3Lessons

PRIME LESSONS

TURNING WITH THE GYRO
BY SANJAY AND ARVIND SESHAN

This lesson uses SPIKE 3 software

LESSON OBJECTIVES

Learn how to turn using the built-in motion sensor (gyro)

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 2

METHODS YOU NEED IN THIS LESSON

Motion Sensor methods – Used to read and reset the values of the gyro sensor

motion_sensor.tilt_angles()

This method returns a tuple containing 3 values. You can read more about Python
Tuples in the Lists and Tuples lesson or at w3Schools Python Tuples

Each value in the tuple is in decidegrees (tenths of degrees). So to check for > 90
degrees you have to check a value of > 900.

motion_sensor.reset_yaw()

motion_sensor.stable()

This method returns true when the sensor is resting flat

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 3

https://www.w3schools.com/python/python_tuples.asp

ROBOT ORIENTATION: YAW, PITCH AND ROLL

Yaw is turning the Hub to
right or left

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 4

Pitch is turning the
Hub up and down

Roll is turning the
Hub to side-to-side

Just like x, y and z coordinates are
used to describe a robot’s position,
yaw, pitch and roll are terms used
to describe a robot’s orientation.
Yaw is rotation around the z-axis.

Pitch is rotation around y-axis.
Roll is rotation around the x-axis.

The built-in Gyro Sensor can
measure the robot’s orientation

USING THE MOTION SENSOR (GYRO) TO TURN

The gyro sensor can be programmed to measure the hub’s yaw, pitch and roll

These values can be used to sense if the robot has turned around x, y, or z axes

In this lesson, we will focus on yaw which can be used to determine if a robot has
turned left or right

For pitch and roll, the robot uses gravity to determine what is a zero reading. Flat on
the ground is 0 pitch and 0 roll.

For yaw, the robot doesn’t have a compass to tell it what is north or south. Therefore,
you need to tell the robot what it should consider zero. This is done with the
reset_yaw() method.

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 5

motion_sensor.tilt_angles()
motion_sensor.reset_yaw()

The Yaw value as seen in the app:

The yaw angle counts up from 0 (positive values) if the robot is turning right, and
down from 0 (negative values) as the robot turns left
At the 180 degree mark, the signs change and there is a switch! The yaw reading as
shown in the app will go from 179 to -180 if turning clockwise, and -180 to 179 if
turning counterclockwise.

If you want to turn more than 180 degrees in a particular direction, you have to do
some extra checks, explained later in the lesson.

The yaw value as read by the tilt_angles tuple:

Motion sensor tuple readings are the opposite sign as the values shown as the yaw
reading in the app and in Blocks, and in decidegrees (tenths of degrees)
When moving clockwise from 0, the readings go from 0 to -1799, then to 1800 and
down to 0

Multiplying the tuple reading by -0.1 converts it into the same value as in the
App/Blocks.

If your turns are limited to less than 180 degrees, use absolute values to avoid
bugs.

YAW ANGLE MEASUREMENTS

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 6

YAW ANGLE MEASUREMENTS (GRAPHIC)

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 7

0

90

179-180

-90

-1

FRONT

YAW ANGLES
AS SEEN IN
THE APP HUB
DISPLAY AND
IN BLOCKS

-900

-17991800

900

YAW ANGLES AS
READ BY THE TUPLE
RETURNED BY
tilt_angles (PYTHON)

0 -1

WAITING FOR THE GYRO TO REACH AN ANGLE

There are two options to measure if the robot has reached the desired angle

Option I: LEGO-specific API
Use the runloop.until function. It will wait until the function returns true.

The function cannot have any parameters. Use global variables as needed instead of parameters.
import runloop

await runloop.until(<function that returns true or false based on conditions/sensor readings>)

This option is easier to use and details can be found in the Spike Knowledge Base

Option II: General Python API

Use while loops
start moving....

while (motion_sensor.get_yaw_angle() < ANGLE):

 <code>

stop moving....

Easier for running code while waiting. You could also use a user defined operator_function in wait_until() –
but a while loop makes the code clearer.

If you do not want to run code, you can place pass in place of <code> to skip the iteration of the loop

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 8

THERE ARE TWO TYPES OF TURNS YOU CAN DO

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 9

180 Degree Pivot Turn

180 Degree Spin Turn

Notice where the robot
ends in both pictures after a
180 degree turn.

In the Spin Turn, the robot
moves a lot less and that
makes Spin Turns are great
for tight positions. Spin
turns tend to be a bit faster
but also a little less
accurate.

So when you need to make
turns, you should decide
which turn is best for you!

C

D

Start Position End Position

Motors
C and D

Move

C

D

Motor
C Moves

Start Position

End PositionC

D

C

D

HOW TO MAKE PIVOT AND SPIN TURNS - 1

Steering Values

50 -50 100 -100

Pivot Turn Right Pivot Turn Left Spin Turn Right Spin Turn Left

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 10

Change steering
value here. A value
of 0 moves straight

C

D

C

D

C

D

C

D

motor_pair.move(pair, steering)

Using move:

HOW TO MAKE PIVOT AND SPIN TURNS - 11

Tank Velocity Values

200, 0 0, 200 200, -200 -200, 200

Pivot Turn Right Pivot Turn Left Spin Turn Right Spin Turn Left

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 11

Change velocity values here.
Same velocity values moves

straight

C

D

C

D

C

D

motor_pair.move_tank(pair, left_velocity, right_velocity)

Using move tank:

C

D

CHALLENGE I

Write a program that turns 90 degrees to the right (clockwise) using a pivot turn

Basic Steps:

Define the motor pair

Reset yaw

Wait until motion sensor is stable

Start the motor pair using move or move_tank as you like.

Wait until the yaw has changed 90 degrees

Stop

NOTE: Always use < and > operators to compare sensor values! Never use ==
because the sensor may not be read at that exact value, and your loop will never
stop.

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 12

CHALLENGE 1 SOLUTION

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 13

from hub import port, motion_sensor
import runloop, motor_pair, sys

Function that returns true when the absolute yaw angle is 90 degrees
def turn_done():
 # convert tuple decidegree into same format as in app and blocks
 return abs(motion_sensor.tilt_angles()[0] * -0.1) > 90

async def main():
 motor_pair.pair(motor_pair.PAIR_1, port.C, port.D)
 motion_sensor.reset_yaw(0)
 await runloop.until(motion_sensor.stable)
 # move with a steering of 50
 motor_pair.move(motor_pair.PAIR_1, 50, velocity=200)
 # Alternate using tank:
 # motor_pair.move_tank(motor_pair.PAIR_1, 200, 0)
 await runloop.until(turn_done)
 motor_pair.stop(motor_pair.PAIR_1)
 sys.exit("Done")

runloop.run(main())

CHALLENGE 1I (ADVANCED)

Write a program that turns up to 355 degrees, clockwise or
counterclockwise, using a spin turn

If you are turning counterclockwise, the yaw angle tuple reading will count up from 0
until 1800, but then it becomes negative and counts down! The reverse is true if you
are turning clockwise. See the graphic.

Important steps:

Set the steering to positive if turning clockwise, and negative if turning counterclockwise

Determine what the yaw reading must be when the robot has to stop, using the standard
(not tuple) convention as seen in the app:

If turning clockwise check that the yaw has become negative, AND is GREATER than the stop angle
(see the graphic and try to figure out why this math works)

If turning counterclockwise check that the yaw has become positive, AND is LESS than the stop
angle (see the graphic and try to figure out why this math works)

Convert the tuple reading into the standard yaw format (degrees, clockwise being positive
and counterclockwise being negative) by multiplying it by -0.1 before using in any checks.

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 14

CHALLENGE 1I (ADVANCED) SOLUTION PAGE 1 OF 5

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 15

from hub import port, motion_sensor
import runloop, motor_pair, sys

GLOBALS
Set from -355 to 355. Positive numbers are clockwise.
degrees_to_turn = 0
Yaw angle reading that indicates the robot needs to stop
stop_angle = 0

Set up a couple of globals to use in the program:
1. degrees_to_turn: degrees that the robot needs to turn. Positive is clockwise,

negative is counterclockwise.
2. stop_angle: the yaw angle reading we are going to check against.

CHALLENGE 1I (ADVANCED) SOLUTION PAGE 2 OF 5

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 16

Add a function that lets the runloop know when the wait condition is reached.
The function has different checks for:
1. Angles whose absolute values are less than 180 i.e. they don’t cross the transition

point
2. Angles that are more than 180 clockwise
3. Angles that are more than 180 counterclockwise

Function that returns true when the yaw has turned past stop angle
def turn_done():
 global degrees_to_turn, stop_angle
 # convert tuple decidegree into the same format as in app and blocks
 yaw_angle = motion_sensor.tilt_angles()[0] * -0.1
 # if we need to turn less than 180 degrees, check the absolute values
 if (abs(degrees_to_turn) < 180):
 return abs(yaw_angle) > stop_angle

 # If we need to turn more than 180 degrees, compute the yaw angle we need to stop at.
 if degrees_to_turn >= 0: # moving clockwise
 # The adjusted yaw angle is positive until we cross 180.
 # Then, we are negative numbers counting up.
 return yaw_angle < 0 and yaw_angle > stop_angle
 else:
 # The adjusted yaw angle is negative until we cross 180
 # Then, we are positive numbers counting down.
 return yaw_angle > 0 and yaw_angle < stop_angle

CHALLENGE 1I (ADVANCED) SOLUTION PAGE 3 OF 5

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 17

Add a function that :
1. Sets up your motor pair
2. Resets the yaw angle to 0
3. Waits for the sensor to be stable

async def setupMotors():
 motor_pair.pair(motor_pair.PAIR_1, port.C, port.D)
 motion_sensor.reset_yaw(0)
 await runloop.until(motion_sensor.stable)

CHALLENGE 1I (ADVANCED) SOLUTION PAGE 4 OF 5

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 18

Add a spinTurn that :
1. Inputs the degrees to turn and does some error checking for range
2. Sets up the motors and calculates the global variable values
3. Starts the motor pair moving with correct steering
4. Waits for the stop condition to be reached and then stops the motors

async def spinTurn(degrees):
 if abs(degrees) > 355:
 print("Out of range")
 return
 await setupMotors()
 global degrees_to_turn, stop_angle
 degrees_to_turn = degrees # set the global to use in the turn_done function
 # set the stop_angle global to use in the turn_done function
 if (abs(degrees) < 180):
 stop_angle = abs(degrees_to_turn)
 else:
 stop_angle = (360 - abs(degrees)) if degrees < 0 else (abs(degrees) - 360)
 # set the steering laue based on turn direction
 steering_val = 100 if degrees >= 0 else -100
 motor_pair.move(motor_pair.PAIR_1, steering_val, velocity=200)
 await runloop.until(turn_done)
 motor_pair.stop(motor_pair.PAIR_1)

CHALLENGE 1I (ADVANCED) SOLUTION PAGE 5 OF 5

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 19

Put it all together:
1. Main function calls spin turn with desired degrees (-355 to 355), waits for

completion and exits
2. Runloop runs the main function

You can extend these concepts to write a pivot function that can pivot the robot -355
to 355. These are good functions to add to a library.

Note that yaw readings are not accurate at fast speeds. Slower turns give better results.
If you need to, you can adjust the turn angle up if it is stopping too soon.

async def main():
 await spinTurn(270)
 sys.exit("Done")

runloop.run(main())

TURNING CHALLENGES

Challenge 2

• Your robot baseball player must run
to second base, turn around and
come back to first.

• Go straight. Turn 180 degrees and
return to the same spot.

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 20

C

D

Challenge 1
• Your robot is a baseball player who

has to run to all the bases and go
back to home plate.

• Can you program your robot to
move forward and then turn left?

• Use a square box or tape

Start and
End
position First

Base

C D

Second
Base

CHALLENGE SOLUTIONS

Challenge 2

You probably used a spin turn because it
is better for tighter turns and gets you
closer to the starting point!

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 21

Challenge 1
You probably used a combination of
the move() method to go straight
and do pivot turns to go around
the box.

CREDITS

This lesson was created by Sanjay and Arvind Seshan for Prime Lessons

Additional contributions by FLL Share & Learn community members.

More lessons are available at www.primelessons.org

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/14/2023) 22

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

