
PRIME LESSONS
By the Makers of EV3Lessons

PRIME LESSONS

FUNCTIONS
BY SANJAY AND ARVIND SESHAN

This lesson uses SPIKE 3 software

LESSON OBJECTIVES

¢ Learn to create and use functions

¢ Learn why a function is useful

Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023) 3

FUNCTIONS
¢ Python functions are similar to algebraic functions

¢ f(x)=3x2

¢ f(3)=27 → f(3) returns 27

¢ Functions are defined as a set of code that takes one
or more input values and returns one or more results

¢ Functions are very versatile. You can put as much
code as you want, as many inputs as you want, and
return any data you want

¢ Indentation is needed to make sure only the code you
want in the function runs when it is called

4

def f(x):

y = 3*x**2 # y=3x^2

return y

def g():

for i in range(7):

print(i)

return "Hello"

Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023)

CONSTRUCTING A FUNCTION
¢ A function definition starts with:

def YOUR_NAME_HERE(PARAMETERS):

¢ The code that is indented below it runs when the
function is called

¢ You can name the function whatever you want.
However, the name must start with a letter (generally
lowercase name)

¢ A good naming convention for functions and variables is
camelCase (the first word is all lowercase and the rest
start capital). All words are conjoined. E.g. myFunction()

¢ The parameters are listed comma separated inside the
parentheses following the function name.

¢ IMPORTANT: These parameters are local variables and
can only be used inside the function.

5

def g():

for i in range(7):

print(i)

return "Hello"

def h(a,b):

for i in range(7):

print(i, a, b)

return "Hello"

Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023)

CALLING/RUNNING A FUNCTION
¢ To call a function, anywhere in you code place the

function name, followed by parentheses with the
desired parameter values

¢ The yellow highlighted line at right calls the function
g(a,b)

¢ The line that calls the function proceeds to run the
function code, where a and b are replaced temporarily
with the parameter values

¢ After the function is run, the code proceeds as usual

6

def g(a, b):

print("Hello", a, b)

print("Running....")

g(2, 3)

print("Done!")

Output:
Running....

Hello 2 3

Done!

Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023)

FUNCTIONS WITH RETURNS
¢ Place “return DATA” within a function to output

DATA as an result of the function

¢ The function g() returns the value 10, which can be
used in the program

7

def g(a, b):

print("Hello", a, b)

return 10

print("Running....")

print(g(2, 3))

print("Done!")

Output:

Running....

Hello 2 3

10

Done!

Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023)

BUILT-IN FUNCTIONS
¢ There are many important functions built in

¢ See a list of important ones below

8

print("Type conversion functions:")
print(bool(0)) # convert to boolean (True or False)
print(float(42)) # convert to a floating point number
print(int(2.8)) # convert to an integer (int)

print("Basic math functions:")
print(abs(-5)) # absolute value
print(max(2,3)) # return the max value
print(min(2,3)) # return the min value
print(pow(2,3)) # raise to the given power (pow(x,y) == x**y)
print(round(2.354, 1)) # round with the given number of digits

print("Pause/sleep")
import time
time.sleep(4) # sleep for n seconds

Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023)

WHEN DO YOU USE FUNCTIONS?

¢ Great for repetitive tasks

¢ Moving distance, turning, etc.

¢ Great for organizing and simplifying code

Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023) 9

WHAT MAKES A USEFUL FUNCTION

¢ Note: Making functions with inputs/outputs are very useful. However, you need to be
careful not to make the function too complicated.

¢ Question: Look at the list of three functions below. Which ones do you think are useful
to use?

¢ Turn90degrees (Turns the robot 90 degrees)

¢ TurnDegrees with an angle and power input

¢ TurnDegrees with angle, power, coast/brake, etc. inputs

¢ Answer:

¢ Turn90degrees may be used often, but you will be forced to make other MyBlocks for other
angles. This will not be fixable later.

¢ TurnDegrees with angle and power as inputs is probably the best choice.

¢ TurnDegrees with angle, power, coast/brake, etc. might be most customizable, but some of the
inputs might never be used.

Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023) 10

VARIABLE SCOPE IN FUNCTIONS
¢ What do you think this code will do?

11

y = 7

def f(x):

print(x)

print(y)

f(4)

print(y)

print(x)

Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023)

VARIABLE SCOPE IN FUNCTIONS
¢ What do you think this code will do?

12

y = 7

def f(x):

print(x)

print(y)

f(4)

print(y)

print(x)

Output:
4

7

7

NameError: name 'x' is not defined

Hmmm....there seems to be an error

Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023)

VARIABLE SCOPE IN FUNCTIONS CONT.
¢ We mentioned that function parameters are local variables…..that

means that those “variables” can only be accessed within the
function

¢ The print(x) on the last line is outside the function and therefore
the variable x cannot be read

¢ The variables defined outside the function are considered global,
meaning they can be used anywhere

¢ Note that if a local and global variable share the same name, the
local one will be called, unless specified

13

y = 7

def f(x):

print(x)

print(y)

f(4)

print(y)

print(x)

Red is the function scope.
Yellow is the global scope.
Red can also access global
variables

Advanced: use “global x” in a function to forcibly use a global
variable over a local one

Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023)

VARIABLE SCOPE EXAMPLE
¢ Same variable names in different scopes

14

y = 7

x = 2

def f(x):

print(x)

print(y)

f(4)

print(y)

print(x)

Output:

4

7

7

2

In this case the x from the global scope is used on the

last line, while the local one is used in the function (not

overwriting the global one)

Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023)

OBJECTS AND METHODS
¢ Objects are somewhat like a set of functions but are initialized and

“saved” to a variable.

¢ In Python, everything is technically an object (even ints, strings, etc.)

¢ Objects are created using a call to a constructor function

¢ E.g., var = object()

¢ Methods are a special type of function associated with an object

¢ To call a method, you must have a variable or value of that type to call

¢ The variable/value you use is an implicit input to the method

¢ The special variable types associated with SPIKE Prime/MINDSTORMS
expose a range of different methods to control your robot. We will go
over these types and their methods in later lessons.

¢ For example, strings have a variety of methods for various purposes

¢ Some examples are shown to the right

¢ Full list of string methods are listed at
https://www.w3schools.com/python/python_ref_string.asp

15

s = str("Test“)

s.upper() # TEST

s.lower() # test

s.find("T") # 0

Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023)

https://www.w3schools.com/python/python_ref_string.asp

CHALLENGE
¢ Create a function with parameter n that adds up all numbers from 0 to n, where n is an

integer

¢ It should return the answer

¢ Hints:

¢ You will use a loop and return statement

16Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023)

SOLUTION
def sumToN(n):

total = 0

counter = 1

while (counter <= n):

total += counter

counter += 1

return total

print(sumToN(5), 1+2+3+4+5)

17Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023)

ASYNC FUNCTIONS

18Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023)

¢ An async function is a special function that can optionally return as soon as it is called,
without waiting for all its code to finish. You must await them if you want to wait for
them to finish before continuing with the next line of code.

¢ Async functions are very useful when you want to run two independent pieces of code
concurrently (i.e. at the same time)

¢ Move an attachment while moving the robot at the same time

¢ Moving each wheel of the robot independently under certain conditions, e.g., squaring on a line.

¢ Spike 3 has built-in async functions. If you do not call them with await, they will run
concurrently. This can be a common source of bugs, so be aware of it. The following code
will run both motors concurrently:

motor.run_for_degrees(port.A, 360, 200)

motor.run_for_degrees(port.B, 360, 200)

To run them sequentially, add an await to the first line.

await motor.run_for_degrees(port.A, 360, 200)

motor.run_for_degrees(port.B, 360, 200)

ASYNC FUNCTIONS

19Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023)

¢ How do you tell which built-in functions are asynchronous?

¢ Look in the Knowledge Base documentation. If you see a ->Awaitable after the function
definition, you need to be aware about calling it with await if you want to wait for it to finish

CHALLENGE
¢ Write a program to play a beep every 3 seconds, and have the hub heart beat every two

seconds, forever

¢ Hints:

¢ You need one async function to play the beep, and another to make the hub heart beat.

¢ Run them concurrently in the main function.

20Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023)

SOLUTION

21Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023)

from hub import light_matrix, sound

import runloop

Beeps every three seconds forever

async def beepEveryThreeSeconds():

 while True:

 await runloop.sleep_ms(3000) # wait for three seconds

 sound.beep() # play a beep

Heart beats every two seconds forever

async def heartBeatEveryTwoSeconds():

 while True:

 await runloop.sleep_ms(1000) # wait for one second

 light_matrix.show_image(light_matrix.IMAGE_HEART) # show the heart

 await runloop.sleep_ms(1000) # wait for one second

 light_matrix.clear() # hide the heart

async def main():

 beepFunc = beepEveryThreeSeconds() # Create a coroutine for the beep

 heartFunc = heartBeatEveryTwoSeconds() # Create a coroutine for the heartbeat

 runloop.run(*[beepFunc,heartFunc]) # Run them both concurrently

runloop.run(main())

CHALLENGE
¢ Modify the program to:

¢ play a beep every 3 seconds, 5 times

¢ The hub heart beat every two seconds, 10 times

¢ Print “Done” when both are complete, and exit the program

¢ Hints:

¢ You need one async function to play the beep, and another to make the hub heart beat.

¢ Each function sets a Boolean to true when it is done

¢ The runloop waits until both are done, then prints “Done”

22Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023)

SOLUTION (PAGE 1 OF 2)

23Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023)

from hub import light_matrix, sound

import runloop, sys

Global variables

beepDone = False

beatDone = False

Function to stop a program via system exit

def stopAndExitProgram():

 sys.exit("Stopping")

Function to be used by runloop to wait

def all_done():

 return beatDone and beepDone # return true with both variables are true

Beeps every three seconds n times

async def beepEveryThreeSeconds(n):

 global beepDone # use the global variable

 beepDone = False # initialize to false

 for i in range(n):

 await runloop.sleep_ms(3000) # wait for three seconds

 sound.beep() # play a beep

 beepDone = True # set done to true

<Continued on next page>

SOLUTION (PAGE 2 OF 2)

24Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023)

Heart beats every two seconds n times

async def heartBeatEveryTwoSeconds(n):

 global beatDone # use the global variable

 beatDone = False # initialize to false

 for i in range (n):

 await runloop.sleep_ms(1000) # wait for one second

 light_matrix.show_image(light_matrix.IMAGE_HEART) # show the hear

 await runloop.sleep_ms(1000) # wait for one second

 light_matrix.clear() # hide the heart

 beatDone = True # set done to true

async def main():

 beepFunc = beepEveryThreeSeconds(5)

 heartFunc = heartBeatEveryTwoSeconds(10)

 runloop.run(*[beepFunc,heartFunc])

 await runloop.until(all_done)

 print("All done")

 stopAndExitProgram()

runloop.run(main())

CREDITS

¢ This lesson was created by Sanjay and Arvind Seshan for Prime Lessons

¢ Additional contributions by FLL Share & Learn community members.

¢ More lessons are available at www.primelessons.org

Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 09/07/2023) 25

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

