
PRIME LESSONS
By the Makers of EV3Lessons

PRIME LESSONS

OBJECT ORIENTED PROGRAMMING
BY SANJAY AND ARVIND SESHAN

LESSON OBJECTIVES

 Learn Object Oriented Programming

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 01/17/2021) 2

CLASSES

 Classes allow you to group together a collection of variables and functions with a common

purpose

 E.g. Class for animals in a zoo (ZooAnimal) could contain:

 Type → tiger, monkey, snake

 Weight → current weight in kg

 Age → age in years

 Birthday() → orders favorite food and increments age by 1

3

CLASSES VS INSTANCES

 You define Classes like functions and start with class myClass(object):

 Inside the definition you list both

 variables associated with a class → weight, age

 methods (functions related to class) → birthday()

 A program can create many Instances of the defined Class -- i.e. variables of that type

 E.g. ZooAnimal may be a Class and both LeoLion and GeoffGiraffe may be Instances of that class

4

METHODS

 Methods are functions associated with a class

 Defined inside start like functions with def myMethod(self, parameters):

 Note that the “self” parameter is important as it defines that it relates to that class

 There is a special method called __init__(self), which is called whenever you create

an Instance of a Class

 To run a method, you need an Instance

 E.g., LeoLion.Birthday()

5

EXAMPLE CLASS

class MyClass(object):

init method

def __init__(self, n):

define class variables

self.myVar = n

define a method that returns myVar+x

def varPlus(self, x):

note that self. variables belong to the class

and can be accessed with calls to that class

return self.myVar+x

6

CALLING CLASSES (OBJECTS)

 Based on the previous example…

myObject = MyClass(7) # sets that object's n-->7

print(myObject.varPlus(3)) # prints 7+3=10

print(myObject.myVar) # prints 7

 The object has methods that are defined in myClass, similar to lists, strings, and other data

types

 You can customize these however you want

 You do not place “self” in method calls

 The self is automatically replaced with the Instance you use to call the method

7

STATIC METHODS

 Static methods belong to the class, not to an individual object

 Begins with @staticmethod

 These methods are universal and do not need an Instance to be called

 You do not have a self “parameter”

8

class MyClass(object):

....

@staticmethod

def myStaticMethod(x):

print(x+20)

You call static methods by

referring to a class, not an object

MyClass.myStaticMethod(10) # 30

STATIC VARIABLES VS OBJECT VARIABLES

 Static variables are defined under the class

definition, not a method

 Static variables can be accessed anywhere

(static and non-static methods)

 Object variables are referred to by using

self.someVariable

 Static variables are referred to by using

myClass.someVariable

9

class MyClass(object):

myStaticVar = 10 # a static variable

def __init__(self, n):

this var cannot be accessed

from a static method

self.myVar = n # variable pertaining

to an object

def printVar(self):

you can call a static and

non-static variable here

return self.myVar

@staticmethod

def myStaticMethod():

print a static variable

print(MyClass.myStaticMethod)

EXTRA: CLASS INHERITANCE

 Classes can “inherit” the methods/properties of

another “superclass”

 You replace “object” with the name of the other class

 Methods can be overridden in the child class by

simply redefining it

 Overridden child methods can still refer back to the

parent method by using super()....

10

Parent superclass

class MyClass(object):

def __init__(self, n):

self.myVar = n

def printVar(self):

return self.myVar

Child class

class ChildClass(MyClass):

override a method

def __init__(self, n, a):

self.a = a

call init of the super class

super().__init__(n)

c = ChildClass(4, 4)

printVar() in inherited

print(c.printVar()) # 4

CHALLENGE

 Create a class that will store information about countries and print it on a method call

 It should store name, population, and area

 Your methods should be 1) print info and 2) get population density (population/area)

 Display your country’s population density on the hub screen

11

CHALLENGE SOLUTION
from spike import PrimeHub, LightMatrix

from spike.control import wait_for_seconds, wait_until, Timer

from math import *

import time

hub = PrimeHub()

class Country(object):

def __init__(self, name, population, area):

self.name = name

self.population = population

self.area = area

def info(self):

print(self.name, self.population, self.area)

def getDensity(self):

return self.population/self.area

myCountry = Country("New Country",500000,1000000)

print(myCountry.getDensity())

hub.light_matrix.write(myCountry.getDensity())

12

CREDITS

 This lesson was created by Sanjay and Arvind Seshan for Prime Lessons

 More lessons are available at www.primelessons.org

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 01/17/2021) 13

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

