PRIME LESSONS

By the Makers of EV3Lessons

OBJECT ORIENTED PROGRAMMING

BY SANJAY AND ARVIND SESHAN

LESSON OBJECTIVES

Learn Object Oriented Programming

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 01/17/2021)

CLASSES

Classes allow you to group together a collection of variables and functions with a common
purpose

E.g. Class for animals in a zoo (ZooAnimal) could contain:
Type — tiger, monkey, snake
Weight — current weight in kg
Age — age in years

Birthday() — orders favorite food and increments age by |

CLASSES VS INSTANCES

You define Classes like functions and start with class myClass (object) :

Inside the definition you list both
variables associated with a class — weight, age

methods (functions related to class) — birthday()

A program can create many Instances of the defined Class -- i.e. variables of that type

E.g. ZooAnimal may be a Class and both LeoLion and GeoffGiraffe may be Instances of that class

METHODS

Methods are functions associated with a class
Defined inside start like functions with def myMethod (self, parameters):
Note that the “self” parameter is important as it defines that it relates to that class

There is a special method called init (self),which is called whenever you create

an Instance of a Class

To run a method, you need an Instance

E.g., LeoLion.Birthday ()

EXAMPLE CLASS

class MyClass(object):
init method
def _init (self, n):
define class variables

self.myVar = n

define a method that returns myVar+x

def varPlus(self, x):
note that self. variables belong to the class
and can be accessed with calls to that class

return self.myVar+x

CALLING CLASSES (OBJECTS)

Based on the previous example...

myObject = MyClass(7) # sets that object's n-->7

print (myObject.varPlus (3)) # prints 7+3=10

print (myObject.myVar) # prints 7

The object has methods that are defined in myClass, similar to lists, strings, and other data
types

You can customize these however you want

You do not place “self” in method calls

The self is automatically replaced with the Instance you use to call the method

STATIC METHODS

Static methods belong to the class, not to an individual object

Begins with @staticmethod

These methods are universal and do not need an Instance to be called

You do not have a self “parameter”

class MyClass (object) :

@staticmethod
def myStaticMethod (x) :
print (x+20)

You call static methods by
referring to a class, not an object

MyClass.myStaticMethod (10) # 30

STATICVARIABLES VS OBJECT VARIABLES

Static variables are defined under the class

definition, not a method class MyClass (object) :
myStaticVar = 10 # a static variable

Static variables can be accessed anywhere

(static and non-static methods) def _ init_ (self, n):

this var cannot be accessed
Object variables are referred to by using # from a static method
Self SomeVar'iable self.myVar = n # variable pertaining

to an object
Static variables are referred to by using def printVar(self):

m)’CIaSS.Somevariable # you can call a static and

non-static variable here

return self.myVar

@staticmethod
def myStaticMethod () :
print a static variable

print (MyClass.myStaticMethod)

EXTRA: CLASS INHERITANCE

Classes can “inherit” the methods/properties of
another “superclass”

You replace “object” with the name of the other class

Methods can be overridden in the child class by
simply redefining it

Overridden child methods can still refer back to the
parent method by using super()....

Parent superclass
class MyClass (object) :
def init (self, n):

self.myVar = n

def printVar (self):

return self.myVar

Child class
class ChildClass (MyClass) :
override a method
def init (self, n, a):
self.a = a
call init of the super class

super (). init (n)

c = ChildClass (4, 4)
printVar () in inherited

print (c.printVar()) # 4

CHALLENGE

Create a class that will store information about countries and print it on a method call
It should store name, population, and area

Your methods should be 1) print info and 2) get population density (population/area)

Display your country’s population density on the hub screen

CHALLENGE SOLUTION

from spike import PrimeHub, LightMatrix
from spike.control import wait_for_seconds, wait_until, Timer
from math import *

import time
hub = PrimeHub()

class Country(object):
def __init__ (self, name, population, area):
self.name = name
self.population = population

self.area = area

def info(self):

print(self.name, self.population, self.area)

def getDensity(self):

return self.population/self.area

myCountry = Country("New Country", ,)
print(myCountry.getDensity())

hub.light_matrix.write(myCountry.getDensity())

CREDITS

This lesson was created by Sanjay and Arvind Seshan for Prime Lessons

More lessons are available at www.primelessons.org

@000

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 01/17/2021) 13

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

