
PRIME LESSONS
By the Makers of EV3Lessons

PRIME LESSONS

OBJECT ORIENTED PROGRAMMING
BY SANJAY AND ARVIND SESHAN

LESSON OBJECTIVES

 Learn Object Oriented Programming

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 01/17/2021) 2

CLASSES

 Classes allow you to group together a collection of variables and functions with a common

purpose

 E.g. Class for animals in a zoo (ZooAnimal) could contain:

 Type → tiger, monkey, snake

 Weight → current weight in kg

 Age → age in years

 Birthday() → orders favorite food and increments age by 1

3

CLASSES VS INSTANCES

 You define Classes like functions and start with class myClass(object):

 Inside the definition you list both

 variables associated with a class → weight, age

 methods (functions related to class) → birthday()

 A program can create many Instances of the defined Class -- i.e. variables of that type

 E.g. ZooAnimal may be a Class and both LeoLion and GeoffGiraffe may be Instances of that class

4

METHODS

 Methods are functions associated with a class

 Defined inside start like functions with def myMethod(self, parameters):

 Note that the “self” parameter is important as it defines that it relates to that class

 There is a special method called __init__(self), which is called whenever you create

an Instance of a Class

 To run a method, you need an Instance

 E.g., LeoLion.Birthday()

5

EXAMPLE CLASS

class MyClass(object):

init method

def __init__(self, n):

define class variables

self.myVar = n

define a method that returns myVar+x

def varPlus(self, x):

note that self. variables belong to the class

and can be accessed with calls to that class

return self.myVar+x

6

CALLING CLASSES (OBJECTS)

 Based on the previous example…

myObject = MyClass(7) # sets that object's n-->7

print(myObject.varPlus(3)) # prints 7+3=10

print(myObject.myVar) # prints 7

 The object has methods that are defined in myClass, similar to lists, strings, and other data

types

 You can customize these however you want

 You do not place “self” in method calls

 The self is automatically replaced with the Instance you use to call the method

7

STATIC METHODS

 Static methods belong to the class, not to an individual object

 Begins with @staticmethod

 These methods are universal and do not need an Instance to be called

 You do not have a self “parameter”

8

class MyClass(object):

....

@staticmethod

def myStaticMethod(x):

print(x+20)

You call static methods by

referring to a class, not an object

MyClass.myStaticMethod(10) # 30

STATIC VARIABLES VS OBJECT VARIABLES

 Static variables are defined under the class

definition, not a method

 Static variables can be accessed anywhere

(static and non-static methods)

 Object variables are referred to by using

self.someVariable

 Static variables are referred to by using

myClass.someVariable

9

class MyClass(object):

myStaticVar = 10 # a static variable

def __init__(self, n):

this var cannot be accessed

from a static method

self.myVar = n # variable pertaining

to an object

def printVar(self):

you can call a static and

non-static variable here

return self.myVar

@staticmethod

def myStaticMethod():

print a static variable

print(MyClass.myStaticMethod)

EXTRA: CLASS INHERITANCE

 Classes can “inherit” the methods/properties of

another “superclass”

 You replace “object” with the name of the other class

 Methods can be overridden in the child class by

simply redefining it

 Overridden child methods can still refer back to the

parent method by using super()....

10

Parent superclass

class MyClass(object):

def __init__(self, n):

self.myVar = n

def printVar(self):

return self.myVar

Child class

class ChildClass(MyClass):

override a method

def __init__(self, n, a):

self.a = a

call init of the super class

super().__init__(n)

c = ChildClass(4, 4)

printVar() in inherited

print(c.printVar()) # 4

CHALLENGE

 Create a class that will store information about countries and print it on a method call

 It should store name, population, and area

 Your methods should be 1) print info and 2) get population density (population/area)

 Display your country’s population density on the hub screen

11

CHALLENGE SOLUTION
from spike import PrimeHub, LightMatrix

from spike.control import wait_for_seconds, wait_until, Timer

from math import *

import time

hub = PrimeHub()

class Country(object):

def __init__(self, name, population, area):

self.name = name

self.population = population

self.area = area

def info(self):

print(self.name, self.population, self.area)

def getDensity(self):

return self.population/self.area

myCountry = Country("New Country",500000,1000000)

print(myCountry.getDensity())

hub.light_matrix.write(myCountry.getDensity())

12

CREDITS

 This lesson was created by Sanjay and Arvind Seshan for Prime Lessons

 More lessons are available at www.primelessons.org

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 01/17/2021) 13

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

