
PRIME LESSONS
By the Makers of EV3Lessons

PRIME LESSONS

LISTS AND TUPLES
BY SANJAY AND ARVIND SESHAN

LESSON OBJECTIVES

 Learn to create and use 1D lists

 Learn to create and use tuples

 Learn to create and use 2D lists

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 01/17/2021) 2

BASICS

 Lists and Tuples store a set of data

 Comma separated lists

 Lists inside brackets

 Tuples inside parentheses

 Each entry in a list or tuple is assigned an index, starting

at 0

 L=[index 0, index 1, index 2…..]

 You can read data at an index (for lists, tuples, and strings)

by calling

 L[index]

3

List:

L = [1, 2, 3]

M = ["Hello", "bye"]

N = [1, True, "Hello"]

L[0] == 1 # True

Tuple:

a = (1, 2, 3)

b = ("Hello", "bye")

c = (1, True, "Hello")

Lists can also be created by using L = [n]*x (creates a list of n x times) → avoid when working with 2d (nested) lists due to some memory
referencing nuances

LIST METHODS

 All list methods edit the original list and do not return anything (except pop() which

returns the removed data)

4

Method Description

append(data) Adds an element at the end of the list

count(data) Returns the number of elements with the specified value

extend(L) Add the elements of a list (or any iterable), to the end of the

current list

index(data) Returns the index of the first element with the specified value

insert(i, data) Adds an element at the specified position

pop(i) Removes the element at the specified position

remove(data) Removes the first item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_index.asp
https://www.w3schools.com/python/ref_list_insert.asp
https://www.w3schools.com/python/ref_list_pop.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_reverse.asp
https://www.w3schools.com/python/ref_list_sort.asp

MUTABILITY

 Lists are a mutable data type

 Tuples, strings, etc. are not

 This means that when you edit a list, it edits that same memory (RAM) object instead of

creating a new one

 You can edit a List by assigning an index’s data to a new piece of data (see yellow)

 This is not true for strings or tuples

5

>>> s = "abc"

>>> s[0] = "b"

TypeError: 'str' object does not support item assignment

>>> t = (1,2,3)

>>> t[1] = 0

TypeError: 'tuple' object does not support item assignment

>>> L = [1,2,3]

>>> L[0] = 4

>>> L

[4, 2, 3]

>>>

COPYING A LIST

 You must use the copy function from the copy module

 Unlike strings, tuples, etc., the memory object must be

copied; other types will be “copied” simply by “changing”

the value

 I.e. you cannot do a=b to copy a list, but you can for other

types → see this in action in the right (green)

 You can copy a list (see yellow)

 M = L.copy()

 Edits do not affect the original list

6

>>> L = [1,2,3]

>>> M=L

>>> print(M, L)

[1, 2, 3] [1, 2, 3]

>>> L.append(5)

>>> print(M, L)

[1, 2, 3, 5] [1, 2,

3, 5]

>>> N = L.copy()

>>> N.append(4)

>>> print(M, L, N)

[1, 2, 3, 5] [1, 2,

3, 5] [1, 2, 3, 5, 4]

MORE ABOUT LISTS

 You can….

 Get slices (sections)

 Length of list

 Sum of list

 Append, etc. (see list methods)

 Sort a list using .sort() (numerically,

alphabetically, etc.) method

 Reverse a list using .reverse() method

7

L = [1, 2, 3, 4, 5]

Slices

L[1:3] == [2, 3]

L[1:5:2] == [2, 4]

L[START:END:INTERVAL]

Length (of list/tuple)

len(L) == 5

Sum (of all items in the list/tuple)

sum(L) == 15

Add to list

L.append(6)

print(L) # [1, 2, 3, 4, 5, 6]

FOR LOOPS WITH LISTS

 You can iterate (i.e. sequentially go through) through a

list or tuple using a “for” loop

 The loop variable (“item” in the example) is assigned

the value of the next item in the list each time through

the loop

 The loop ends when there are no more items

8

L = [1, 2, 8, "hello"]

for item in L:

print(item)

Output:

1

2

8

hello

STRINGS TO LISTS

 You can use the list() function to split each character into

an entry

 You can also use the split() method to convert the string

into a list, splitting at the desired item

 You can undo the conversion with "".join(L)

9

>>> L = list("abcd")

>>> print(L)

['a', 'b', 'c', 'd']

>>> s = "a,b,c,de"

>>> M = s.split(",")

>>> print(M)

['a', 'b', 'c', 'de']

CHALLENGE

 Given a list of numbers, sum the squares of the numbers and return the answer. Then print

the answer to the light matrix

 You will need to use 1D lists, for loops, and optionally functions

10

CHALLENGE SOLUTION

11

from spike import PrimeHub, LightMatrix

from spike.control import wait_for_seconds, wait_until, Timer

from math import *

import time

hub = PrimeHub()

def sumSquares(L):

sum = 0

for num in L:

sum += num**2

return sum

hub.light_matrix.write(sumSquares([1, 3, 9]))

2D LISTS: LISTS WITHIN LISTS

 In Python, a 2D list is just a list of lists (i.e. each element of the

list is another list)

 You can have 3D, 4D, etc.

 2D list sometimes called a matrix

12

L = [[2, 3, 5],

[1, 4, 7]]

GETTING AN ELEMENT

 Similar to 1D lists

 You get an element of a list within an element of the “parent”

list

 Address an element by calling

 L[row][column]

13

L = [[2, 3, 5],

[1, 4, 7]]

L[0][1] == 3

L[1][2] == 7

LOOPING ON A 2D LIST

 Use nested loops

 Iterate on the parent list then the child list

 Loop over rows then columns

14

L = [[2, 3, 5],

[1, 4, 7]]

for row in L:

for col in row:

print(col)

Output:

2

3

5

1

4

7

COPYING A 2D LIST

 Similar mutability issues to 1D lists but even more

 Each “child” list has its own memory reference

 We need to do a “deepcopy”

 Unfortunately, micropython does not natively implement the copy library so we need to

create our own deepcopy

 The function below uses recursion (which will be taught in a later lesson) to create a

simple copy of list elements without using the original list

 Use this function on any list - i.e., M=deepCopy(L)

15

def deepCopy(L):
if (type(L)==list):

return [deepCopy(e) for e in L]
else: return L

2D LIST COPYING ANALYSIS

 Let’s take a look at the memory structure of the

following code:

 Notice in the object diagram (right), M and L point to the

same list, showing that it is really the same object

 While N has its own list, its elements point to the same

lists as L, showing that they were not copied when using

the normal copy method

 O, however, has all of its children independent of L,

showing that it is copied correctly using deepcopy

 Basically, if you are working with 2D lists, use deepcopy.

16

def deepCopy(L):
if (type(L)==list):

return [deepCopy(e) for e in L]
else: return L

L = [[1, 2, 3] , [4, 5, 6]]

M = L

N = L.copy()

O = deepCopy(L)

LIGHT MATRIX PIXEL CONTROL

 Each pixel on the light matrix is represented by a x,y value and a brightness value

 The method to control the matrix pixel is set_pixel(x, y, brightness).

 The x value is the pixel position counting from the left (range 1-5)

 The y value is the pixel position counting from the top (range 1-5)

 The brightness value ranges from 0-100

For example:

hub.light_matrix.set_pixel(1, 4, brightness=100)

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 01/17/2021) 17

CHALLENGE

 Given a 2D list of coordinates, in a loop, turn on, wait one second, and turn off each pixel

sequentially

 The list will look like:

L=[[1, 1],

[2, 4],

[3, 5]]

 Each child list is an [x, y] coordinate

18

CHALLENGE SOLUTION
from spike import PrimeHub, LightMatrix

from spike.control import wait_for_seconds, wait_until, Timer

from math import *

import time

hub = PrimeHub()

L=[[1, 1],

[2, 4],

[3, 5]]

for coord in L:

x = coord[0]

y = coord[1]

Note that the previous three lines can be replaced with a single 'for (x,y) in L:' instead

hub.light_matrix.set_pixel(x, y, brightness=100)

time.sleep(1)

hub.light_matrix.set_pixel(x, y, brightness=0)

19

CREDITS

 This lesson was created by Sanjay and Arvind Seshan for Prime Lessons

 More lessons are available at www.primelessons.org

Copyright © 2021 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 01/17/2021) 20

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

