

PRIME LESSONS

PROPORTIONAL LINE FOLLOWER

BY SANJAY AND ARVIND SESHAN

This lesson uses SPIKE 3 software

LESSON OBJECTIVES

- Learn to create a proportional line follower
- Learn how to calculate error and correction
- Learn how to use variables and math blocks

HOW FAR IS THE ROBOT FROM THE LINE?

- Reflected light sensor readings show how "dark" the measured area is on average
- Calibrated readings should range from 100 (on just white) to 0 (on just black)

LINE FOLLOWING

- **Computing an error** \rightarrow how far is the robot from a target
 - Robots follow the edge of line \rightarrow target should be a sensor reading of 50
 - Error should indicate how far the sensor's value is from a reading of 50
- **Making a correction** \rightarrow make the robot take an action that is proportional to the error. You must multiply the error by a scaling factor to determine the correction.
 - To follow a line a robot must turn towards the edge of the line
 - The robot must turn more sharply if it is far from a line
 - How do you do this: You must adjust steering input on a move block

HOW DO YOU MAKE A PROPORTIONAL LINE FOLLOWER?

Pseudocode:

- 1. Compute the error = Distance from line = (Light sensor reading Target Reading)
- 2. Scale the error to determine a correction amount. Adjust your scaling factor to make you robot follow the line more smoothly.
- 3. Use the Correction value (computed in Step 2) to adjust the robot's turn towards the line.

CHALLENGE

Compute Error Distance from line =	set Error - to F - reflected light - 50
(Light sensor reading - Target Reading)	
Compute Correction	
Scale the error to determine a correction amount. Use this to adjust steering input on move block.	set Correction ▼ to Error * 0.5
Apply Correction	start moving right: 30 start moving Correction
Use the correction to control the steering of the robot	

PROPORTIONAL LINE FOLLOWER

Part I: Compute the Error Our goal is to stay at the edge of the line (light sensor = 50)

Part 2: Apply the correction The error in part I is multiplied by a Constant of Proportionality (0.5). This will be different for each robot/application. See slide 8 to learn how to tune this number.

KEY STEP: TUNING THE CONSTANT

- Note, the 0.5 constant in the previous slide is specific to our robot you need to tune this value for yourself
 - This constant is called the Proportional Constant, or Constant of Proportionality
 - The most common way to tune your constant is trial and error.
 - This can take time. Here are some tips:
 - Start with your constant as I.0 adjust by ±0.5 initially
 - Adjust to a point where the controller is pretty smooth
 - Adjust ±0.1 for fine tuning

CREDITS

- This lesson was created by Sanjay Seshan and Arvind Seshan for SPIKE Prime Lessons
- More lessons are available at www.primelessons.org

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

License.